H-Unitary and Lorentz Matrices: A Review

نویسندگان

  • Yik-Hoi Au-Yeung
  • Chi-Kwong Li
  • Leiba Rodman
چکیده

Many properties of H-unitary and Lorentz matrices are derived using elementary methods. Complex matrices which are unitary with respect to the indefinite inner product induced by an invertible Hermitian matrix H, are called H-unitary, and real matrices that are orthogonal with respect to the indefinite inner product induced by an invertible real symmetric matrix, are called Lorentz. The focus is on the analogues of singular value and CS decompositions for general H-unitary and Lorentz matrices, and on the analogues of Jordan form, in a suitable basis with certain orthonormality properties, for diagonalizable H-unitary and Lorentz matrices. Several applications are given, including connected components of Lorentz similarity orbits, products of matrices that are simultaneously positive definite and H-unitary, products of reflections, stability and robust stability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lorentz Transformations

In these notes we study Lorentz transformations and focus on the group of proper, orthochronous Lorentz transformations, donated by L+. (These Lorentz transformations have determinant one and preserve the direction of time.) The 2×2 matrices with determinant one, denoted SL(2, C), play a key role, as there is a map from SL(2,C) onto L+, that is 2-to-1 and a homomorphism. In this correspondence,...

متن کامل

A Derivation of Vector and Momentum Matrices

Nonunitary, finite-dimensional matrix representations of the Poincaré algebra are found. These covariant representations may already be known but are less well-known than the unitary, canonical representations or the continuous representations with momentum as a gradiant operator. Given standard angular momentum (spin) matrices satisfying the Lorentz algebra of rotations and boosts, the calcula...

متن کامل

A brief introduction to quaternion matrices and linear algebra and on bounded groups of quaternion matrices

The division algebra of real quaternions, as the only noncommutative normed division real algebra up to isomorphism of normed algebras, is of great importance. In this note, first we present a brief introduction to quaternion matrices and quaternion linear algebra. This, among other things, will help us present the counterpart of a theorem of Herman Auerbach in the setting of quaternions. More ...

متن کامل

Representations of Quantum Lorentz Group on Gelfand Spaces

A large class of representations of the quantum Lorentz group QLG (the one admitting Iwasawa decomposition) is found and described in detail. In a sense the class contains all irreducible unitary representations of QLG. Parabolic subgroup P of the group QLG is introduced. It is a smooth deformation of the subgroup of SL(2,C) consisting of the upper-triangular matrices. A description of the set ...

متن کامل

Massive Particle Fields, with Momentum Matrices

Including translation matrices in covariant non-unitary Poincaré representations alters the construction of massive particle fields from canonical unitary fields. The conventional procedure without spacetime translation matrices determines covariant fields that transform by matrix representations of the homogeneous Lorentz group combined with a differential operator representation of the Poinca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2004